Indoxyl Sulfate-Induced Activation of (Pro)renin Receptor Promotes Cell Proliferation and Tissue Factor Expression in Vascular Smooth Muscle Cells

نویسندگان

  • Maimaiti Yisireyili
  • Shinichi Saito
  • Shaniya Abudureyimu
  • Yelixiati Adelibieke
  • Hwee-Yeong Ng
  • Fuyuhiko Nishijima
  • Kyosuke Takeshita
  • Toyoaki Murohara
  • Toshimitsu Niwa
  • Rudolf Kirchmair
چکیده

UNLABELLED Chronic kidney disease (CKD) is associated with an increased risk of cardiovascular disease (CVD). (Pro)renin receptor (PRR) is activated in the kidney of CKD. The present study aimed to determine the role of indoxyl sulfate (IS), a uremic toxin, in PRR activation in rat aorta and human aortic smooth muscle cells (HASMCs). We examined the expression of PRR and renin/prorenin in rat aorta using immunohistochemistry. Both CKD rats and IS-administrated rats showed elevated expression of PRR and renin/prorenin in aorta compared with normal rats. IS upregulated the expression of PRR and prorenin in HASMCs. N-acetylcysteine, an antioxidant, and diphenyleneiodonium, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase, suppressed IS-induced expression of PRR and prorenin in HASMCs. Knock down of organic anion transporter 3 (OAT3), aryl hydrocarbon receptor (AhR) and nuclear factor-κB p65 (NF-κB p65) with small interfering RNAs inhibited IS-induced expression of PRR and prorenin in HASMCs. Knock down of PRR inhibited cell proliferation and tissue factor expression induced by not only prorenin but also IS in HASMCs. CONCLUSION IS stimulates aortic expression of PRR and renin/prorenin through OAT3-mediated uptake, production of reactive oxygen species, and activation of AhR and NF-κB p65 in vascular smooth muscle cells. IS-induced activation of PRR promotes cell proliferation and tissue factor expression in vascular smooth muscle cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells

Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

CREB, NF-κB, and NADPH oxidase coordinately upregulate indoxyl sulfate-induced angiotensinogen expression in proximal tubular cells.

In chronic kidney disease (CKD), indoxyl sulfate, a uremic toxin, accumulates in serum, and the expression of angiotensinogen (AGT) is upregulated in renal proximal tubular cells. The present study aimed to determine the relationship between indoxyl sulfate and the upregulation of AGT expression in proximal tubular cells. Indoxyl sulfate induced expression of AGT in rat renal cortex and in cult...

متن کامل

Physiological role of adenosine and its receptors in tissue hypoxia-induced

It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...

متن کامل

NF-κB plays an important role in indoxyl sulfate-induced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells.

We previously demonstrated that indoxyl sulfate induces senescence and dysfunction of proximal tubular cells by activating p53 expression. However, little is known about the role of nuclear factor (NF)-κB in these processes. The present study examines whether activation (phosphorylation) of NF-κB by indoxyl sulfate promotes senescence and dysfunction in human proximal tubular cells (HK-2 cells)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014